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Abstract 

Introduction: Clinical diagnosis is a pivotal and highly valued skill in medical practice. Most current interventions for teaching 

and improving diagnostic reasoning are based on the dual process model of cognition. Recent studies which have applied the 

popular dual process model to improve diagnostic performance by “Cognitive De-biasing” in clinicians have yielded 

disappointing results. Thus, it may be appropriate to also consider alternative models of cognitive processing in the teaching and 

practice of clinical reasoning. 

Methods: This is critical-narrative review of the predictive brain model. 

Results: The theory of predictive brains is a general, unified and integrated model of cognitive processing based on recent 

advances in the neurosciences. The predictive brain is characterised as an adaptive, generative, energy-frugal, context-sensitive 

action-orientated, probabilistic, predictive engine. It responds only to predictive errors and learns by iterative predictive error 

management, processing and hierarchical neural coding.   

Conclusion: The default cognitive mode of predictive processing may account for the failure of de-biasing since it is not 

thermodynamically frugal and thus, may not be sustainable in routine practice. Exploiting predictive brains by employing 

language to optimise metacognition may be a way forward. 
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I. INTRODUCTION 

Clinical diagnostic expertise is a critical, highly valued, 

and admired skill (Montgomery, 2006). However, 

diagnostic errors are common and important adverse 

events which merit research and effective prevention 

(Gupta et al., 2017; Singh et al., 2014; Skinner et al., 

2016). Thus, it is now widely acknowledged and 

recognized that concerted efforts are required to improve 

the research, training and practice of clinical reasoning 

in improving diagnosis (Simpkin et al., 2017; Singh & 

Graber, 2015; Zwaan et al., 2013). The consensus among 

practitioners, researchers and preceptors is that most 

preventable diagnostic errors are associated with bias 

reasoning during rapid, non-analytical, default cognitive 

processing of clinical information (Croskerry, 2013). 

The most widely held theory which accounts for this 

observation is the dual process model of cognition (B. 

Djulbegovic et al., 2012; Evans, 2008; Schuwirth, 2017). 

It posits that most diagnostic errors reside in intuitive, 

non-analytical or systems 1 thinking (Croskerry, 2009). 

Thus, the logical, practical and common sense 

implication which follows from this assumption is that 

we should activate and apply analytical or system 2 

Practice Highlights 

 According to the dual process model of cognition diagnostic errors are caused by bias reasoning. 

 Interventions to improve diagnosis based on “Cognitive De-biasing” methods report disappointing results. 
 The predict brain is a unified model of cognition which accounts for diagnostic errors, the failure of “Cognitive 

De-biasing” and may point to effective solutions. 

 Using appropriate language as simple rules or thumb, to fine-tune predictive processing meta-cognitively may be 

a practical strategy to improve diagnostic problem solving. 
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thinking to counter-check or “De-bias” system 1 errors 

(Croskerry, 2009). This is a popular notion and it has 

facilitated the emergence of many schools of clinical 

reasoning based on training methods designed to 

deliberately understand, recognise, categorise and avoid 

specific diagnostic errors arising from system thinking 1 

or cognitive bias (Reilly et al., 2013; Rencic et al., 2017; 

Restrepo et al., 2020). However, careful research on the 

merits of these interventions under controlled conditions 

do not show consistent nor clear benefits (G. Norman et 

al., 2014; G. R. Norman et al., 2017; O'Sullivan & 

Schofield, 2019; Sherbino et al., 2014; Sibbald et al., 

2019; J. N. Walsh et al., 2017). Moreover, even the 

recognition and categorization of these cognitive error 

events themselves are deeply confounded by hindsight 

bias itself (Zwaan et al., 2016). Perhaps, at this juncture, 

it might be appropriate to consider alternative models of 

cognition based on advances in multi-disciplinary 

neuroscience research which have expanded greatly in 

recent years (Monteiro et al., 2020). 

 

Over the past decade the theory of predictive brains has 

emerged as an ambitious, unified, convergent and 

integrated model of cognitive processing from research 

in a large variety of core domains in cognition which 

include philosophy, meta-physics, cellular physics, 

thermodynamics, Associative Learning theory, 

Bayesian-probability theory, Information theory, 

machine learning, artificial intelligence, behavioural 

science, neuro-cognition, neuro-imaging, constructed 

emotions and psychiatry (Bar, 2011; Barrett, 2017a; 

Barrett, 2017b; Clark, 2016; Friston, 2010; Hohwy, 

2013; Seligman, 2016; Teufel & Fletcher, 2020). It may 

have profound and practical implications on how we live, 

work and learn. However, to my knowledge, there is 

almost no discussion of this novel proposition in either 

medical education pedagogy or research. Thus, in this 

presentation I will review recent developments in the 

predictive brain model of cognition, map its key 

elements which impacts on pedagogy and research in 

medical education and propose an application in the 

training of diagnostic reasoning based on it.  

 

An early version of this work had been presented as an 

abstract (Lim & Teoh, 2018). 

 

II. METHODS 

This is a critical-narrative review of the predictive brain 

model from Friston’s “The free energy principle” 

proposition a decade ago to more recent critical 

examination of the emerging supportive evidence based 

on neurophysiological studies over the past 5 years 

(Friston, 2010; K. S. Walsh et al., 2020). 

 

III. RESULTS 

A. The Brain is a Frugal Predictive Engine 

The Brain Is A Frugal Predictive Engine (General 

references (Bar, 2011; Barrett, 2017a; Barrett, 2017b; 

Clark, 2013; Clark, 2016; Friston, 2010; Gilbert & 

Wilson, 2007; Hohwy, 2013; Seligman, 2016; Seth et al., 

2011; Sterling, 2012). 

 

In contrast with traditional top-down, feed-forward 

models of cognition, the predictive brain model reverses 

and inverts this process. Perception is characterised as an 

entirely inferential rapidly adaptive, generative, energy-

frugal, context-sensitive action-orientated, probabilistic, 

predictive process (Tschantz et al., 2020). This system is 

governed by the need to respond rapidly to ever changing 

demands from the external environmental and our body’s 

internal physiological signals (intero-ception) and yet 

minimise free energy expenditure (or waste) (Friston, 

2010; Kleckner et al., 2017; Sterling, 2012). Thus, it is 

not passive and reactive to new information but 

predictive and continuously proactive. From very early, 

elemental and sparse cues it is continuously generating 

predictive representations based on remembered similar 

experiences in the past which may include simulations. 

It performs iterative matching of top down prior 

representations with bottom up signals and cues in a 

hierarchy of categories of abstractions and content 

specificity over scales of space and time (Clark, 2013; 

Friston & Kiebel, 2009; Spratling, 2017a). This matching 

process is also sensitive to variations in context and thus 

enable us to make sense of rapidly changing and complex 

situations (Clark, 2016).  

 

Cognitive resource, in terms of allocating attention, is 

only focused on the management of errors in prediction 

or the mismatch between prior representations and new 

emergent information. It seeks to minimise prediction 

errors (PEs) and there is repetitive, recognition-

expectation-based signal suppression when this is 

achieved. Thus, this is a system which only responds to 

the unfamiliar situation or what it considers as news 

worthy. This is analogous to Claude Shannons’s classic 

analysis of “surprisals” in information theory (Shannon 

et al., 1993). Learning is based on the generation and 

neural coding of a new predictive representations in 

memory. The most direct and powerful evidence for this 

process comes from optogenetic experiments with their 

exquisitely high degree of resolution in the monitoring 

and manipulations over space-time of neuronal 

signalling and behaviour in freely forging rats which 

show causal linkages between PE, dopamine neurons and 

learning (Nasser et al., 2017; Steinberg et al., 2013). 

 

The brain intrinsically generates representations of the 

world in which it finds itself from past experience which 
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is refined by sensory data. New sensory information is 

represented and inferred in terms of these known causes. 

Determining which combination of the many possible 

causes best fits the current sensory data is achieved 

through a process of minimising the error between the 

sensory data and the sensory inputs predicted by the 

expected causes, i.e. the PE. In the service of PE 

reduction, the brain will also generate motor actions such 

as saccadic eye movement and foraging behaviour. The 

prediction arises from a process of “backwards thinking” 

or inferential Bayesian best guess or approximation 

based simultaneously on sensory data and prior 

experience (Chater & Oaksford, 2008; Kersten et al., 

2004; Kwisthout et al., 2017a; Kwisthout et al., 2017b; 

Ting et al., 2015). It is a hierarchical predictive coding 

process, reflecting the serial organization of the neuronal 

architecture of cerebral cortex; higher levels are abstract, 

whereas the lowest level amounts to a prediction of the 

incoming sensory data (Kolossa et al., 2015; Shipp, 

2016; Ting et al., 2015). The actual sensory data is 

compared to the predicted sensory data, and it is the 

discrepancies, or ‘error’ that ascends up the hierarchy to 

refine all higher levels of abstraction in the model. Thus, 

this is a learning process whereby, with each iteration, 

the model representations are optimised and encoded in 

long term memory as the PEs minimise (Friston, 

FitzGerald, Rigoli et al., 2017; Spratling, 2017b). 

This system of neural responses is regulated and fine-

tuned by varying the gains on the weightage of the 

reliability (or precision) of the PE estimate itself. In other 

words, it is the level of confidence (versus uncertainty) 

in the PE which determines the intensity of attention 

allocated to it and strength of coding in memory 

following its resolution (Clark, 2013; Clark, 2016; 

Feldman & Friston, 2010; Hohwy, 2013). This 

regulatory, neuro-modulatory process is impacted by the 

continuous cascade of action relevant information which 

is sensitive to both external context and internal 

interoceptive (i.e. from perception of our own 

physiological responses) and affective signals (Clark, 

2016). This metacognitive capacity to effectively 

manipulate and re-calibrate the precision of PE itself may 

be a critical aspect of decision making, problem solving 

behaviour and learning. (Hohwy, 2013; Picard & Friston, 

2014). 

 

B. Clinical Reasoning is Predictive Error Processing 

and Learning is Predictive Coding 

The core processes of the predictive brain which are 

engaged during diagnostic reasoning are summarised in 

Table 1 and Figure 1.   

 

Core features of the predictive brain model Clinical reasoning features and processes 
The frugal brain and free energy principle(Friston, 2010) Cognitive load in problem solving (Young et al., 2014) 

 
Iterative matching of top down priors Vs bottom up signals Inductive foraging (Donner-Banzhoff & Hertwig, 2014; Donner-

Banzhoff et al., 2017) 

Predictive error processing Pattern recognition in diagnosis 

Recognition-expectation-based signal suppression  Premature closure (Blissett & Sibbald, 2017; Melo et al., 2017) 

Hierarchical predictive error coding as learning Development of illness scripts (Custers, 2014) 

Probabilistic-Bayesian inferential approximations   Bayesian inference in clinical reasoning 
Context sensitivity  Contextual factors in diagnostic errors(Durning et al., 2010) 

Action orientation  Foraging behaviour in clinical diagnosis (Donner-Banzhoff & 

Hertwig, 2014; Donner-Banzhoff et al., 2017) 

Interoception and affect in prediction error management  Gut feel and regret (metacognition) 

The precision(reliability/uncertainty) of prediction errors Clinical uncertainty (metacognition) (Bhise et al., 2017; Simpkin & 

Schwartzstein, 2016) 

Table 1: Core features of the predictive brain model of cognition manifested as clinical reasoning processes 
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Legend to Figure 1 

A summary of the cognitive processes engaged by the predict brain model during clinical diagnosis 

A: Active search for diagnostic clues based on prior experience of similar patients in similar situations. 

B: Recognition of key features will activate a series of familiar illness script from long term memory to match with the new case.  If this is 

successful, a diagnosis made and any prediction error signals are rapidly silenced. 

C & D: When the illness scripts do not match the presenting features (????), cognition slows down, attention is heightened and further searches 

are made for additional matching clues and illness scripts. This is iterated  until a satisfactory match is found or a new illness script is generated 

to account for the mismatch. 

E: A new variation in the presenting features for that disease is then encoded in memory as a new illness script in memory and thus, a valuable 

learning moment.  

F: The degree of uncertainty or level of confidence in matching key presenting features to a diagnosis is a meta-cognitive skill and a critical 

expertise in clinical diagnosis. This corresponds to the precision or gain/weightage of prediction errors (Meta cognition) in the predictive brain 

model. 

Figure 1: A summary of the cognitive processes engaged by the predict brain model during clinical diagnosis 

 

Thermodynamic frugality is a central feature of the 

predictive brain model and in this system, the primacy of 

attending only to surprises or PEs is pivotal (Friston, 

2010). This might be regard as an energy efficient 

strategy in coping with cognitive load which has been 

long recognised as an important consideration in clinical 

problem solving and learning (Young et al., 2014; Van 

Merrienboer & Sweller, 2010). 

 

From the first moments of a diagnostic encounter the 

clinician is alert to clues which might point to the 

diagnosis and begins to generate possible diagnosis 

scenarios and simulations based upon her prior 

experience of similar patients and situations (Donner-

Banzhoff & Hertwig, 2014). This is iterative and, from a 

scanty set of presenting features, a plausible diagnosis 

may be considered within a few seconds to minutes 

(Donner-Banzhoff & Hertwig, 2014; Donner-Banzhoff 

et al., 2017). Thus, a familiar illness script is activated 

from long term memory to match with the new case 

(Custers, 2014). If this is successful, a particular 

diagnosis is recognised and any PE signal is rapidly 

silenced. Functional MRI studies of clinicians during this 

process showed that highly salient diagnostic 

information, reducing uncertainty about the diagnosis, 

rapidly decreased monitoring activity in the 

frontoparietal attentional network and may contribute to 

premature diagnostic closure, an important cause of 

diagnostic errors (Melo et al., 2017). This may be 

considered a form of diagnosis or recognition related PE 

signal suppression analogous to the well know 

phenomenon of repetitive suppression (Blissett & 

Sibbald, 2017; Bunzeck & Thiel, 2016; Krupat et al., 

2017). 

 

In cases where the illness scripts do not match the 

presenting features, a PE event is encountered, cognition 

slows down, attention is heightened and further searches 

are made for additional matching clues and illness scripts 

(Custers, 2014). This is iterated until a satisfactory match 

is found or a new illness script is generated to account 

for the mismatch. This is then encoded in memory as a 

new variation in the presenting features for that disease 

and thus, a valuable learning moment. Bayesian 
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inference is a fundamental feature of both clinical 

diagnostic reasoning and the predictive brain model 

(Chater & Oaksford, 2008). 

 

As in the predictive brain model, external contextual 

factors and internal emotional and physiological 

responses such as gut feeling and regret, exert profound 

effects on clinical decision making (M. Djulbegovic et 

al., 2015; Durning et al., 2010; Stolper & van de Wiel, 

2014; Stolper et al., 2014). Also active inductive 

foraging behaviour in searching for diagnostic clues 

described in experienced primary physicians is 

analogous to behaviour directed at reducing PEs 

(Donner-Banzhoff & Hertwig, 2014; Donner-Banzhoff 

et al., 2017). The precision or gain/weightage of PEs is 

manifested metacognitively as uncertainties or levels of 

confidence in clinical reasoning (Sandved-Smith et al., 

2020). Metacognition is a critical capacity and expertise 

in effective decision making. (Bhise et al., 2017; Fleming 

& Frith, 2014; Simpkin & Schwartzstein, 2016). 

 

C. Why Applying the Dual Process Model May Not 

Improve Clinical Reasoning 

Recent studies which have applied the popular dual 

process model to improve diagnostic performance by 

“cognitive de-biasing” in clinicians have yielded 

disappointing results (G. R. Norman et al., 2017). 

Cognitive processing of the predictive brain as the 

dominant default network mode of operation may 

account for this setback since de-biasing is not naturistic, 

requires retrospective “off line” processing after the 

monitoring salience network has already shut off (Krupat 

et al., 2017; Melo et al., 2017). It is not 

thermodynamically frugal and thus, may not be 

sustainable in routine practice (Friston, 2010; Young et 

al., 2014). Even Daniel Kahneman himself admits that, 

despite decades of research in cognitive bias he is unable 

to exert agency of the moment and de-bias himself 

(Kahneman, 2013). This will be more so in novice 

diagnosticians in the training phase who have scanty 

illness scripts and limited tolerance of any further 

cognitive loading (Young et al., 2014). The failure to 

even identify cognitive biases reliably by clinicians due 

to hindsight bias itself suggests that this intervention will 

be the least effective one in improving diagnostic 

reasoning (Zwaan et al., 2016). 

 

D. Using Words to Fine Tune the Precision of 

Diagnostic Prediction Error 

Daniel Kahneman, the foremost expert on cognitive bias, 

cautions that, contrary to what some experts in medical 

education advice, avoiding bias is ineffective in 

improving decision making under uncertainty (Restrepo 

et al., 2020). By contrast he suggested that we apply 

simple, common sense, rules of thumb (Kahneman et al., 

2016). I hypothesise that instructing clinical trainees to 

use appropriate words to self in the diagnostic setting 

during active, naturalistic PE processing before the 

diagnosis is made and not as a retrospective counter 

check to cognition afterwards may be a way forward 

(Betz et al., 2019; Clark, 2016; Lupyan, 2017). In a 

multi-center, iterative thematic content analysis of over 

2,000 cases of diagnostic errors with a structured 

taxonomy, Schiff and colleagues identified a limited 

number of pitfall themes which were overlooked and 

predisposed physicians to reasoning errors (Reyes Nieva 

H et al., 2017). These pitfall themes included three which 

are of particular interest in relation to naturalistic PE 

processing namely: (1) counter diagnostic cues, (2) 

things that do not fit and (3) red flags (Reyes Nieva H et 

al., 2017). Thus, we instructed our student interns and 

internal medicine residents to pay particular attend to 

these three diagnostic pitfalls during review of new 

patients and clinical problems (Lim & Teoh, 2018). They 

were required to append the following sub-headings to 

their clerking impression in the patient’s electronic 

health record (eHR): (a) Counter diagnostic features; (b) 

Things that do not fit; (c) Red flags. This template was 

added after the resident had entered his or her numerated 

list of diagnoses or issues. “Counter diagnostic features” 

was defined as symptoms, signs or investigations which 

were inconsistent with the proposed primary diagnosis. 

“Things that do not fit” was defined as any finding that 

could not be reasonably accounted for taking into 

account the main and differential diagnoses. “Red flags” 

were defined as findings which raised the possibility of a 

more serious underlying illness requiring early diagnosis 

or intervention. The attending physicians were required, 

during bedside rounds, to give feedback on these points 

and make amendments to the eHR as appropriate. This 

exercise may give us an opportunity to see if we can 

improve diagnostic accuracy by using pivotal words-to-

self in the appropriate setting to maintain cognitive 

openness, flexibility and thus, avoid premature (Krupat 

et al., 2017). It is also a valuable critical, metacognitive 

thinking habit to inculcate in tyro diagnosticians 

(Carpenter et al., 2019). 

 

V. CONCLUSION 

The theory of predictive brains has emerged as a major 

narrative in the understanding of how our mind works. It 

may account for the limitations of interventions designed 

to improve diagnostic problem solving which are based 

on the dual process theory of cognition. Exploiting 

predictive brains by employing language to optimise 

metacognition may be a way forward. 
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